iklan

Bank Soal Dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)

Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Catatan calon guru yang kita diskusikan ketika ini akan membahas wacana Matematika Dasar Suku Banyak Atau Polinomial. Sebelumnya kita sudah mengenal istilah dalam matematika yaitu matematika dasar persamaan kuadrat, alasannya persamaan kuadrat ialah bab dari suku banyak, jadi ketika kita berguru persamaan kuadrat, kita sudah berguru wacana suku banyak.

Mempelajari dan memakai aturan-aturan pada suku banyak juga sangatlah mudah, kalau Anda mengikuti step by step yang kita diskusikan dibawah ini, maka anda akan dengan gampang memahami soal-soal suku banyak dan menemukan solusinya.

Dalam matematika, polinomial atau suku banyak (juga ditulis sukubanyak) ialah pernyataan matematika yang melibatkan jumlahan perkalian pangkat dalam satu atau lebih variabel dengan koefisien.

Suku banyak (polinomial) dalam $x$ berderajat $n$ adalah:
$f(x)=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots+a_{n}x^{n}$
dimana:
  • $n$ ialah bilangan cacah dan $a\neq 0$
  • $a_{n},\ a_{n-1},\ a_{n-2},\ \cdots, a_{0}$ konstanta dan merupakan koefisien dari $x^{n}, x^{n-1}, \cdots, x^{0}$
  • Derajat suatu suku banyak dalam $x$ dinyatakan oleh pangkat tertinggi ($n$) dalam suku banyak tersebut.

Nilai Suku Banyak
Nilai suku banyak $f(x)$ berderajat $n$ pada ketika $x=k$ ialah $f(k)$

Kesamaan Suku Banyak
Suku banyak $f(x)$ dan $g(x)$ dikatakan sama ketika derajat dan koefisian variabel-variabel yang berpangkat sama besarnya ialah sama.

Pembagian Suku Banyak
Pembagian suku banyak sanggup dilakukan dengan dua cara yaitu dengan bersusun kebawah dan cara horner. Untuk cara pembagian suku banyak ini kita diksusikan pada diskusi tersendiri, jadi ketika ini pembagian suku banyak sudah kita anggap bisa.

Teorema Sisa
  • Jika suatu fungsi suku banyak $f(x)$ dibagi oleh faktor linear berbentuk $(x-a)$, sisanya ialah $s=f(a)$.
  • Jika suatu fungsi suku banyak $f(x)$ dibagi oleh faktor linear berbentuk $(ax-b)$, sisanya ialah $s=f \left(\dfrac{b}{a} \right)$.

Teorema Faktor
  • Jika suatu fungsi suku banyak $f(x)$ mempunyai faktor $(x-a)$, maka $f(a)=0$.
  • Jika suatu fungsi suku banyak $f(x)$ mempunyai faktor $(ax-b)$, $f \left(\dfrac{b}{a} \right)=0$.

Secara umum bentuk suku banyak suatu $f(x)$ kalau dibagi $P(x)$ dan hasil bagi $H(x)$ dan sisa $S(x)$ sanggup dituliskan: $f(x)=P(x) \cdot H(x) + S(x)$
  • Jika $f(x)$ dibagi $(x-a)$ maka $f(x)=H(x) \cdot (x-a)+f(a)$
  • Jika $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+mx+n$

Teorema Vieta - Hasil Jumlah dan Hasil Kali akar-akar Suku Banyak
(*François Viète ialah pakar matematika era ke-16 kebangsaan Perancis). Persamaan suku banyak yang mempunyai akar-akar real paling banyak $n$ buah. Jika $x_{1},x_{2},x_{3}, \dots x_{n}$ ialah akar-akar dari persamaan tersebut, maka hubungan antara akar-akarnya ini ialah sebagai berikut.
  • $f(x)=ax^{2}+bx+c$, akar-akarnya $x_{1}$ dan $x_{2}$
    • $x_{1}+x_{2}=-\dfrac{b}{a}$
    • $x_{1} \cdot x_{2}= \dfrac{c}{a}$
  • $f(x)=ax^{3}+bx^{2}+cx+d$, akar-akarnya $x_{1}$, $x_{2}$ dan $x_{3}$
    • $x_{1}+x_{2}+x_{3}=-\dfrac{b}{a}$
    • $x_{1} \cdot x_{2} + x_{1} \cdot x_{3}+ x_{2}\cdot x_{3} = \dfrac{c}{a}$
    • $x_{1} \cdot x_{2} \cdot x_{3} = -\dfrac{d}{a}$
  • $f(x)=ax^{4}+bx^{3}+cx^{2}+dx+e$, akar-akarnya $x_{1}$, $x_{2}$, $x_{3}$ dan $x_{4}$
    • $x_{1}+x_{2}+x_{3}+x_{4} =-\dfrac{b}{a}$
    • $x_{1} \cdot x_{2} + x_{1} \cdot x_{3}+\cdots+ x_{3}\cdot x_{4} = \dfrac{c}{a}$
    • $x_{1} \cdot x_{2} \cdot x_{3}+ x_{1} \cdot x_{2} \cdot x_{4}+\cdots+ x_{2} \cdot x_{3}\cdot x_{4} = -\dfrac{d}{a}$
    • $x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} = \dfrac{e}{a}$
Beberapa sampel soal untuk kita diskusikan, yang kita pilih dari soal-soal SBMPTN (Seleksi Bersama Masuk Perguruan Tinggi Negeri) atau SMMPTN (Seleksi Mandiri Masuk Perguruan Tinggi Negeri) dan UN (Ujian Nasional). Mari berdiksusi;

1. Soal SBMPTN 2015 (*Soal Lengkap)

Sisa pembagian $x^{2014}-Ax^{2015}+Bx^{3}-1$ oleh $x^{2}-1$ ialah $–x+B$. Nilai $2A+B$ adalah...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Untuk menuntaskan soal diatas, kita coba mengingatkan kembali wacana teorema sisa, yaitu:
Untuk
$F(x)=H(x)\cdot P(x)+Sisa$
$F(x)=H(x)\cdot (x-a)(x-b)+mx+n$
maka
$F(a)=am+n$
$F(b)=bm+n$

Pada soal disampaikan bahwa $x^{2014}-Ax^{2015}+Bx^{3}-1$ dibagi oleh $x^{2}-1$ sisanya $-x+B$.
$\begin{align}
& x^{2014}-Ax^{2015}+Bx^{3}-1 \\
& = \left (x^{2}-1 \right )\cdot H(x)+sisa \\
& = \left (x-1 \right )\left (x+1 \right )\cdot H(x)-x+B \\
& = \left (x-1 \right )\left (x+1 \right )\cdot H(x)-x+B
\end{align}$

Untuk $x=1$
$\begin{align}
1^{2014}-A(1)^{2015}+B(1)^{3}-1 & = -1+B \\
1-A+B-1 & = -1+B \\
-A+B & = -1+B \\
A & = 1
\end{align}$

Untuk $x=-1$
$\begin{align}
(-1)^{2014}-A(-1)^{2015}+B(-1)^{3}-1 & = -(-1)+B \\
-1+A-B-1 & = 1+B \\
A-B & = 1+B \\
1-B & = 1+B \\
B & = 0
\end{align}$

Nilai $2A+B=2(1)+0=2$

$\therefore$ Pilihan yang sesuai $(B)\ 2$

2. Soal UM UNDIP 2015 (*Soal Lengkap)

Jika suku banyak $f(x)$ dibagi dengan $(x-a)(x-b)$ dengan $a \neq b$, maka sisa pembagian ini adalah...
$(A)$ $\dfrac{x+a}{a-b}f\left ( a \right )+\dfrac{x+b}{b-a}f\left ( b \right )$
$(B)$ $\dfrac{x-a}{a-b}f\left ( b \right )+\dfrac{x-b}{b-a}f\left ( a \right )$
$(C)$ $\dfrac{x+a}{a-b}f\left ( b \right )+\dfrac{x+b}{b-a}f\left ( a \right )$
$(D)$ $\dfrac{x-b}{a-b}f\left ( a \right )+\dfrac{x-a}{b-a}f\left ( b \right )$
$(E)$ $\dfrac{x-b}{a-b}f\left ( b \right )+\dfrac{x-a}{b-a}f\left ( a \right )$
Alternatif Pembahasan:

Untuk menuntaskan soal diatas, kita coba memakai teoerma sisa, yaitu:
Untuk
$f(x)=h(x)\cdot (x-a)(x-b)+mx+n$
maka
$f(a)=am+n$
$f(b)=bm+n$

Kita terapkan ke soal dengan mengeliminasi $n$ atau mengeliminasi $m$;
#mengeliminasi $n$
$f(a)-f(b)=am-bm$
$f(a)-f(b)=( a-b)m$
$m=\dfrac{f(a)-f(b)}{a-b}$

#mengeliminasi $m$
$b \cdot f(a)-a \cdot f(b)=bn-an$
$b \cdot f(a)-a \cdot f(b)=( b-a)n$
$n=\dfrac{b \cdot f(a)-a \cdot f(b)}{b-a}$

$\therefore $ Sisa Pembagian ialah $mx+n$
$mx+n=\dfrac{f(a)-f(b)}{a-b}x+\dfrac{b \cdot f(a)-a \cdot f(b)}{b-a}$
$mx+n=\dfrac{f(a)-f(b)}{a-b}x+\dfrac{a \cdot f(b)-b \cdot f(a)}{a-b}$
$mx+n=\dfrac{x \cdot f(a)-x \cdot f(b)+a \cdot f(b)-b \cdot f(a)}{a-b}$
$mx+n=\dfrac{x \cdot f(a)-b \cdot f(a)-x \cdot f(b)+a \cdot f(b)}{a-b}$
$mx+n=\dfrac{x-b}{a-b}f(a)+\dfrac{a-x}{a-b}f(b)$
$mx+n=\dfrac{x-b}{a-b}f(a)+\dfrac{x-a}{b-a}f(b)$

$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{x-b}{a-b}f\left ( a \right )+\dfrac{x-a}{b-a}f\left ( b \right )$

3. Soal SBMPTN 2014 (*Soal Lengkap)

Diketahui $P(x)$ suatu polinomial. Jika $P(x+1)$ dan $P(x-1)$ masing-masing memperlihatkan sisa $2$ apabila masing-masing dibagi $x-1$,
maka $P(x)$ dibagi $x^{2}-2x$ memperlihatkan sisa...
$\begin{align}
(A)\ & x+2 \\
(B)\ & 2x \\
(C)\ & x \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

$P(x)=H(x)\cdot (x-a)(x-b)+mx+n$

Untuk $x=0$
$P(x)=H(x)\cdot x(x-2)+mx+n$
maka $P(0)=n$

Untuk $x=2$
$P(x)=H(x)\cdot x(x-2)+mx+n$
$P(2)=2m+n$

Pada soal diketahui $P(x+1)=2$ dan $P(x-1)=2$ maka untuk $x=1$ diperoleh $P(2)=2$ dan $P(0)=2$.

$P(0)=2$ dan $P(0)=n$ maka $n=2$
$P(2)=2$ dan $P(2)=2m+n$ maka $2m+n=2$ sehingga $m=0$.

Sisa pembagian ialah $mx+n$ yaitu $0x+2=2$.

$\therefore$ Pilihan yang sesuai $(E)\ 2$

4. Soal SBMPTN 2016 (*Soal Lengkap)

Diketahui sisa pembagian suku banyak $f(x)-2g(x)$, oleh $x^{2}+x-2$ ialah $x+3$, sisa pembagian $2f(x)+g(x)$ oleh $x^{2}-3x+2$ ialah $x+1$, maka sisa pembagian $f(x)g(x)$ oleh $x-1$ adalah...
$\begin{align}
(A)\ & \dfrac{23}{24} \\
(B)\ & \dfrac{18}{24} \\
(C)\ & -\dfrac{21}{25} \\
(D)\ & -\dfrac{48}{25} \\
(E)\ & -\dfrac{50}{36}
\end{align}$
Alternatif Pembahasan:

Dari keterangan pada soal kita peroleh;
$f(x)-2g(x)=(x^{2}+x-2)H(x)+x+3$
$f(x)-2g(x)=(x+2)(x-1)H(x)+x+3$

$2f(x)+g(x)=(x^{2}-3x+2)H(x)+x+1$
$2f(x)+g(x)=(x-2)(x-1)H(x)+x+1$

Untuk $x=1$ atau $x=2$, kita peroleh;
$\begin{array}{c|c|cc}
f(1)-2g(1) = 4 & \times 1\\
2f(1)+g(1) = 2 & \times 2\\
\hline
f(1)-2g(1) = 4 & \\
4f(1)+2g(1) = 4 & (+)\\
\hline
5f(1) = 8 &\\
f(1) = \dfrac{8}{5} & \\
g(1) = -\dfrac{6}{5}
\end{array} $

Nilai $f(1)g(1)=\dfrac{8}{5}\dfrac{-6}{5}=-\dfrac{48}{25}$

$\therefore$ Pilihan yang sesuai $(D)\ -\dfrac{48}{25}$

5. Soal UN 2011 (*Soal Lengkap)

Diketahui suku banyak $P(x)=2x^{4}+ax^{3}-3x^{2}+5x+b$. Jika $P(x)$ dibagi $(x-1)$ sisa $11$ dan dibagi $(x+1)$ sisa $-1$, maka nilai $(2a+b)$ adalah...
$\begin{align}
(A)\ & 13 \\
(B)\ & 10 \\
(C)\ & 8 \\
(D)\ & 7 \\
(E)\ & 6
\end{align}$
Alternatif Pembahasan:

Dari soal kita peroleh beberapa data, antara lain;
Jika $P(x)$ dibagi $(x-1)$ sisa $11$ maka $P(1)=11$
Jika $P(x)$ dibagi $(x+1)$ sisa $-1$ maka $P(-1)=-1$

Karena $P(1)=11$ maka
$P(x)=2x^{4}+ax^{3}-3x^{2}+5x+b$
$P(1)=2+a-3+5+b$
$11=a+b+4$
$a+b=7 \cdots (1)$

Karena $P(-1)=-1$ maka
$P(x)=2x^{4}+ax^{3}-3x^{2}+5x+b$
$P(-1)=2-a-3-5+b$
$-1=-a+b-64$
$-a+b=5 \cdots (2)$

$\begin{array}{c|c|cc}
a+b = 7 & \\
-a+b = 5 & (+)\\
\hline
2b = 12 & \\
b = 6 & \\
a = 1 &
\end{array} $

Nilai $2a+b=2+6=8$

$\therefore$ Pilihan yang sesuai $(C)\ 8$

6. Soal UN 2007 (*Soal Lengkap)

Suku banyak $f(x)$ dibagi $(x+1)$ sisanya $10$ dan kalau dibagi $(2x-3)$ sisanya $5$. Jika suku banyak $f(x)$ dibagi $(2x^{2}-x-3)$, sisanya adalah...
$\begin{align}
(A)\ & -2x+8 \\
(B)\ & -2x+12 \\
(C)\ & -x+4 \\
(D)\ & -5x+5 \\
(E)\ & -5x+15
\end{align}$
Alternatif Pembahasan:

Dari apa yang disampaikan pada soal, ada beberapa hal yang sanggup kita simpulkan yaitu;
$f(-1)=10$ dan $f(\dfrac{3}{2})=5$

Dari bentuk suku banyak;
$f(x)=h(x)\cdot p(x)+sisa$
$f(x)=h(x)\cdot 2x^{2}-x-3+mx+n$
$f(x)=h(x)\cdot (x+1)(2x-3)+mx+n$

$f(-1)=-m+n$ maka $-m+n=10$ $\cdots (1)$
$f(\dfrac{3}{2})=\dfrac{3}{2}m+n$ maka $\dfrac{3}{2}m+n=5$ $\cdots (2)$

Dengan mengeliminasi atau substitusi pers. $(1)$ dan $(2)$ kita peroleh nilai $m=-2$ atau $n=8$

$mx+n \equiv -2x+8$

$\therefore$ Pilihan yang sesuai $(A)\ -2x+8$

7. Soal SIMAK UI 2018 Kode 416 (*Soal Lengkap)

Diketahui suku banyak $f(x)$ dibagi $x^{2}+x-2$ bersisa $ax+b$ dan dibagi $x^{2}-4x+3$ bersisa $2bx+a-1$. Jika $f(-2)=7$, maka $a^{2}+b^{2}=\cdots$
$\begin{align}
(A)\ & 12 \\
(B)\ & 10 \\
(C)\ & 9 \\
(D)\ & 8 \\
(E)\ & 5
\end{align}$
Alternatif Pembahasan:

Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+sisa$
ketika $f(x)$ dibagi $(x+2)(x-1)$ maka $f(x)=H(x) \cdot (x+2)(x-1)+ax+b$
ketika $f(x)$ dibagi $(x-1)(x-3)$ maka $f(x)=H(x) \cdot (x-3)(x-1)+2bx+a-1$

Dari persamaan di atas kita peroleh:
$f(-2)=7$ maka $-2a+b=7$
$ \begin{align}
f(1) & = f(1) \\
a+b & = 2b+a-1 \\
b & = 1 \\
-2a+b & = 7 \\
-2a+1 & = 7 \\
-2a & = 6 \\
a & = -3 \\
a^{2}+b^{2} & = (-3)^{2}+(1)^{2} \\
& = 10
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(B)\ 10$

8. Soal SIMAK UI 2018 Kode 421 (*Soal Lengkap)

Diketahui suku banyak $f(x)$ dibagi $x^{2}+3x+2$ bersisa $3bx+a-2$ dan dibagi $x^{2}-2x-3$ bersisa $ax-2b$. Jika $f(3)+f(-2)=6$, maka $a+b=\cdots$
$\begin{align}
(A)\ & -1 \\
(B)\ & 0 \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & 3
\end{align}$
Alternatif Pembahasan:

Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+sisa$
ketika $f(x)$ dibagi $(x+2)(x+1)$ maka $f(x)=H(x) \cdot (x+2)(x+1)+3bx+a-2$
ketika $f(x)$ dibagi $(x+1)(x-3)$ maka $f(x)=H(x) \cdot (x+1)(x-3)+ax-2b$

Dari persamaan di atas kita peroleh:
$ \begin{align}
f(3)+f(-2) & = 6 \\
3a-2b-6b+a-2 & = 6 \\
4a-8b & = 8 \\
a-2b & = 2 \cdots (1)\\
f(-1) & = f(-1) \\
-3b+a-2 & = -a-2b \\
-b+2a & = 2 \cdots (2)\\
\end{align} $

$\begin{array}{c|c|cc}
a-2b = 2 & \\
-b+2a = 2 & (-)\\
\hline
-a-b = 0 & \\
a+b = 0
\end{array} $

$ \therefore $ Pilihan yang sesuai ialah $(B)\ 0$

9. Soal UMB-PT 2012 Kode 270 (*Soal Lengkap)

Hasil kali semua $x$ yang memenuhi persamaan $9^{x^{3}-4x^{2}-x+4}-9^{x^{2}+x-6}=0$ adalah...
$\begin{align}
(A)\ & -10 \\
(B)\ & -5\sqrt{2} \\
(C)\ & 5 \\
(D)\ & 5\sqrt{2} \\
(E)\ & 10
\end{align}$
Alternatif Pembahasan:

Bentuk persamaan kita coba manipulasi dengan sifat-sifat aljabar dan bilangan berpangkat, menyerupai berikut ini;
$\begin{align}
9^{x^{3}-4x^{2}-x+4}-9^{x^{2}+x-6} &= 0 \\
9^{x^{3}-4x^{2}-x+4} &= 9^{x^{2}+x-6} \\
x^{3}-4x^{2}-x+4 &= x^{2}+x-6 \\
x^{3}-4x^{2}-x+4 -x^{2}-x+6 &= 0 \\
x^{3}-5x^{2}-2x+10 &= 0
\end{align}$
Untuk hasil kali semua nilai $x$ adalah:
$\begin{align}
x_{1} \cdot x_{2} \cdot x_{3} &= -\dfrac{d}{a} \\
&= -\dfrac{10}{1} \\
&= -10
\end{align}$

$\therefore$ Pilihan yang sesuai ialah $(A)\ -10 $


10. Soal UM STIS 2011 (*Soal Lengkap)

Hasil bagi dan sisa suku banyak $3x^{3}+10x^{2}-8x+3$ dibagi $x^{2}+3x-1$, berturut-turut adalah...
$\begin{align}
(A)\ & 3x+1\ \text{dan}\ 2x+2 \\
(B)\ & 3x+1\ \text{dan}\ -8x+4 \\
(C)\ & 3x-1\ \text{dan}\ 8x+2 \\
(D)\ & 3x+19\ \text{dan}\ -56x+21 \\
(E)\ & 3x+19\ \text{dan}\ 51x+16
\end{align}$
Alternatif Pembahasan:

Pembagian suku banyak di atas kita coba bagikan dengan pembagian bersusun kebawah;

Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)

$\therefore$ Pilihan yang sesuai $(B)\ 3x+1\ \text{dan}\ -8x+4$

11. Soal UM STIS 2011 (*Soal Lengkap)

Jika $f(x)=ax^{3}+3bx^{2}+(2a-b)x+4$ dibagi $(x-1)$ sisanya $10$, sementara kalau dibagi dengan $(x+2)$ akan menghasilkan sisa $2$. Nilai $a$ dan $b$ berturut-turut yang memenuhi adalah...
$\begin{align}
(A)\ & \dfrac{4}{3}\ \text{dan}\ 1 \\
(B)\ & \dfrac{3}{4}\ \text{dan}\ 1 \\
(C)\ & 1\ \text{dan}\ \dfrac{4}{3} \\
(D)\ & 1\ \text{dan}\ \dfrac{3}{4} \\
(E)\ & -\dfrac{4}{3}\ \text{dan}\ 1
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Pembagian suku banyak yang mungkin membantu yaitu;

Teorema Sisa
  • Jika suatu fungsi suku banyak $f(x)$ dibagi oleh faktor linear berbentuk $(x-a)$, sisanya ialah $s=f(a)$.
  • Jika suatu fungsi suku banyak $f(x)$ dibagi oleh faktor linear berbentuk $(ax-b)$, sisanya ialah $s=f \left(\dfrac{b}{a} \right)$.
$\begin{align}
f(x) &= ax^{3}+3bx^{2}+(2a-b)x+4 \\
f(1) &= a(1)^{3}+3b(1)^{2}+(2a-b)(1)+4 \\
10 &= a +3b+ 2a-b +4 \\
6 &= 3a +2b \\
\hline
f(-2) &= a(-2)^{3}+3b(-2)^{2}+(2a-b)(-2)+4 \\
2 &= -8a +12b -4a+2b+4 \\
-2 &= -12a +14b
\end{align}$

Dengan mengeliminasi atau substitusi, kita peroleh:
$\begin{array}{c|c|cc}
-12a+14b = -2 & (\times 1) \\
3a+2b = 6 & (\times 4) \\
\hline
-12a+14b = -2 & \\
12a+8b = 24 & (+) \\
\hline
22b = 22 & \\
b = 1 & 3a+2b = 6 \\
& 3a+2(1) = 6 \\
& a = \dfrac{4}{3}
\end{array} $

$\therefore$ Pilihan yang sesuai ialah $(A)\ \dfrac{4}{3}\ \text{dan}\ 1$

12. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika suku banyak $P(x)=ax^{3}+x^{2}+bx+1$ habis dibagi $x^{2}+1$ dan $x+a$, maka $ab=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Jika suku banyak $P(x)$ kita bagi $x^{2}+1$ dengan cara bersusun ke bawah, menyerupai berikut ini:
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Karena $P(x)$ habis dibagi $x^{2}+1$ maka sisa pembagian di atas yaitu $-ax+bx=(-a +b)x$ harus sama dengan $0$.

Agar $(-a +b)x=0$ maka $-a+b=0$ atau $b=a$.

Karena $P(x)$ habis dibagi $x+a$
$ \begin{align}
P(x) & = ax^{3}+x^{2}+bx+1 \\
P(-a) & = a(-a)^{3}+(-a)^{2}+b(-a)+1 \\
0 & = -a^{4}+a^{2}+(a)(-a)+1 \\
0 & = -a^{4}+a^{2}-a^{2}+1 \\
a^{4} & = 1 \\
a & = \pm 1 \\
b & = \pm 1 \\
ab & = 1
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(C)\ 1$

13. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Suku banyak $f(x)=ax^{3}-ax^{2}+bx-a$ habis dibagi $x^{2}+1$ dan dibagi $x-4$ bersisa $51$ Nilai $a+b=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Jika suku banyak $f(x)$ kita bagi $x^{2}+1$ dengan cara bersusun ke bawah, menyerupai berikut ini:
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Karena $f(x)$ habis dibagi $x^{2}+1$ maka sisa pembagian di atas yaitu $-ax+bx =(-a +b)x$ harus sama dengan $0$.

Agar $(-a +b)x=0$ maka $-a+b=0$ sehingga berlaku $b=a$.

Karena $P(x)$ dibagi $x-4$ bersisa $51$, maka berlaku:
$ \begin{align}
f(x) & = ax^{3}-ax^{2}+bx-a \\
f(4) & = a(4)^{3}-a(4)^{2}+(a)(4)-a \\
51 & = 64a -16a +4a-a \\
51 & = 51a \\
a & = 1 \\
b & = 1 \\
a+b & = 2
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(E)\ 2$

14. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika $P(x)= x^{3}+ax^{2}+2x+b$ dengan $a \neq 0$ habis dibagi $x^{2}+2$, maka nilai $\dfrac{b}{2a}$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Jika suku banyak $P(x)$ kita bagi $x^{2}+2$ dengan cara bersusun ke bawah, menyerupai berikut ini:
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Karena $P(x)$ habis dibagi $x^{2}+2$ maka sisa pembagian di atas yaitu $b-2a$ harus sama dengan $0$.

$ \begin{align}
b-2a & = 0 \\
b & = 2a \\
\hline
\dfrac{b}{2a} & = \dfrac{2a}{2a} \\
& = 1
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(C)\ 1$

15. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika $P(x)= ax^{3}+bx^{2}+(a-2b)x-a$ habis dibagi oleh $x^{2}+2$ dan $x+b$, maka nilai $ab$ adalah...
$\begin{align}
(A)\ & -\dfrac{1}{4} \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & -1 \\
(D)\ & -2 \\
(E)\ & -4
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Suku banyak $P(x)$ berderajat $3$ dan habis dibagi $x^{2}+2$ dan $x+b$ sehingga berlaku:
$ \begin{align}
P(x) & \equiv \left( k \right)\left(x^{2}+2\right) \left(x+b \right) \\
ax^{3}+bx^{2}+(a-2b)x-a & \equiv kx^{3}+kbx^{2}+2kx+2bk
\end{align} $
Dari kesamaan dua suku banyak di atas kita peroleh
$ \begin{align}
bx^{2} \equiv kbx^{2} & \rightarrow b=kb \rightarrow k=1 \\
ax^{3} \equiv kx^{3} & \rightarrow a=k \rightarrow a=1 \\
-a \equiv 2bk & \rightarrow -a=2bk \rightarrow -1=2b \\
\hline
ab & = (1) \cdot -\dfrac{1}{2}=-\dfrac{1}{2}
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(B)\ -\dfrac{1}{2}$

16. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Suku banyak $P(x)= x^{3}+bx^{2}-2x-6$ dibagi $(x-2)^{2}$ bersisa $-2x+a$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 15 \\
(B)\ & 13 \\
(C)\ & 0 \\
(D)\ & -13 \\
(E)\ & -15
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Jika suku banyak $P(x)$ kita bagi $(x-2)^{2}=x ^{2}-4x+4$ dengan cara bersusun ke bawah, menyerupai berikut ini:
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Karena $P(x)$ dibagi $(x-2)^{2}$ bersisa $-2x+a$ maka sisa pembagian di atas yaitu $10x+4bx-4b-22$ sama dengan $-2x+a$, sehingga berlaku:
$ \begin{align}
10x+4bx-4b-22 & \equiv -2x+a \\
(10 +4b)x-4b-22 & \equiv -2x+a \\
\hline
10+4b & \equiv -2 \rightarrow b=-3 \\
-4b-22 & \equiv a \rightarrow a=-10 \\
a+b & = -13
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(D)\ -13$

17. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Diketahui suku banyak $f(x)= ax^{3}+(a+b)x^{2}-bx+a+b$. Jika $x^{2}+1$ ialah faktor dari $f(x)$ dan $f(a)=2$, maka nilai $ab=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Jika suku banyak $f(x)$ kita bagi $x^{2}+1$ dengan cara bersusun ke bawah, menyerupai berikut ini:
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Karena $x^{2}+1$ ialah faktor $f(x)$ maka sisa pembagian di atas yaitu $-ax-bx$ sama dengan $0$, sehingga berlaku $-(a+b)x=0$ atau $a+b=0$.
$ \begin{align}
f(x) &= ax^{3}+(a+b)x^{2}-bx+a+b \\
f(a) &= a(a)^{3}+(a+b)(a)^{2}-b(a)+a+b \\
2 &= a(a)^{3}+(0)(a)^{2}-b(a)+0 \\
2 &= a(a)^{3}-(-a)(a)+0 \\
0 &= a^{4}+a^{2}-2 \\
0 &= \left(a^{2}+2 \right)\left(a^{2}-1 \right) \\
0 &= \left(a^{2}+2 \right)\left(a-1 \right)\left(a+1 \right) \\
\hline
a =1 & \rightarrow b=-1 \\
a =-1 & \rightarrow b=+1 \\
a+b & = -1
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(B)\ -1$

18. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika suku banyak $f(x)= ax^{3}+3x^{2}+(b-2)x+b$ habis dibagi $x^{2}+1$, maka nilai $a+b=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 4 \\
(D)\ & 5 \\
(E)\ & 6
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Jika suku banyak $f(x)$ kita bagi $x^{2}+1$ dengan cara bersusun ke bawah, menyerupai berikut ini:
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)
Karena $f(x)$ habis dibagi $x^{2}+1$ maka sisa pembagian di atas yaitu $(b-a-2)x+b-3$ harus sama dengan $0$.

Agar $(b-a-2)x+b-3=0$, maka $ b-a-2 =0$ dan $b-3=$ sehingga berlaku $b=3$ atau $b-a-2 =0 \rightarrow a=1$. Nilai $a+b=4$

$ \therefore $ Pilihan yang sesuai ialah $(C)\ 4$


19. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019

Jika Diketahui $P(x)= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right)$. Dengan $Q(x)$ ialah suatu suku banyak. Jika $P(x)$ dibagi dengan $(x+1)$ bersisa $10$ dan kalau dibagi $(x-1)$ bersisa $20$. Maka apabila $P(x)$ dibagi dengan $(x-2)$ akan bersisa...
$\begin{align}
(A)\ & 10 \\
(B)\ & 20 \\
(C)\ & 25 \\
(D)\ & 35 \\
(E)\ & 45
\end{align}$
Alternatif Pembahasan:

Catatan calon guru wacana Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:

  • Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
  • Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
$ \begin{align}
P(x) &= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(x) &= \left( x-1 \right)\left( x-1 \right)\left( x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(-1) & =10 \rightarrow -a +b= 10 \\
P( 1) &=20 \rightarrow a +b= 20 \\
\end{align} $

$\begin{array}{c|c|cc}
-a+b = 10 & \\
a+b = 20 & (+) \\
\hline
2b = 30 & \\
b = 15 & \\
a = 5
\end{array} $
Jika $P(x)$ dibagi oleh $(x-2)$, maka sisa pembagian adalah:
$ \begin{align}
P(x) &= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(x) &= \left( x-1 \right)\left( x-1 \right)\left( x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(2) &= 2a+ b \\
P(2) &= 2(5)+ (15)=25
\end{align} $

$ \therefore $ Pilihan yang sesuai ialah $(C)\ 25$

Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Suku Banyak atau Polinomial (*Soal Dari Berbagai Sumber) di atas ialah coretan kreatif siswa pada
  • lembar balasan evaluasi harian matematika,
  • lembar balasan evaluasi simpulan semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait problem alternatif penyelesaian soal Suku Banyak atau Polinomial ini sangat diharapkan😊CMIIW

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 😂 mari kita lihat kreativitas siswa ini lewat matematika;
Matematika Dasar Suku Banyak Atau Polinomial  Bank Soal dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)


Sumber http://www.defantri.com

Berlangganan update artikel terbaru via email:

0 Response to "Bank Soal Dan Pembahasan Matematika Dasar Suku Banyak (Polinomial)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel