iklan

Diskusi Soal Wacana Sistem Persamaan Linear Kuadrat (Splk)

Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat  Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK)Mat ini ada soal matematika dari seorang blogger,.. pertanyaan ini ditanyakan pada grup facebook Blogger Indonesia. Tidak tahu tugasnya dia, pacarnya atau saudaranya, yang pentidia sedang kesulitan... ayo kita coba bantu selesaikan kata Tika.

Soal pertama tampaknya perihal Sistem Persamaan Linear Kuadrat, soalnya kurang lebih menyerupai berikut ini.
Gambarlah grafik fungsi $y=x^{2}-6x+8$ yang berpotongan dengan grafik fungsi $y=7-4x$! Tentukan titik perpotongan grafik tersebut!
Alternatif Pembahasan:

Kalau untuk menggambarnya serahkan kepada saya, sahut Ema.
Untuk menggambar grafik $y=7-4x$
#Kita cari titik potong terhadap sumbu-$x$ sehingga $y=0$.
$y=7-4x$
$0=7-4x$
$4x=7$
$x=\frac{7}{4}$
Titik potong terhadap sumbu-$x$ yaitu $(\frac{7}{4},0)$.

##Kita cari titik potong terhadap sumbu-$y$ sehingga $x=0$.
$y=7-4x$
$y=7-4(0)$
$y=7$
Titik potong terhadap sumbu-$y$ yaitu $(0,7)$.
Dengan menghubungkan kedua titik tersebut dapatlah grafik $y=7-4x$.

Sekarang bagaimana menggambar $y=x^{2}-6x+8$, fungsi ini di sebuu dengan istilah Fungsi Kuadrat
#Kita cari titik potong terhadap sumbu-$x$ sehingga $y=0$.
$y=x^{2}-6x+8$
$0=x^{2}-6x+8$
$0=(x-4)(x-2)$
$x=4$ atau $x=2$
Titik potong terhadap sumbu-$x$ yaitu $(4,0)$ dan $(2,0)$

##Kita cari titik potong terhadap sumbu-$y$ sehingga $x=0$.
$y=x^{2}-6x+8$
$y=0^{2}-6(0)+8$
$y=8$
Titik potong terhadap sumbu-$y$ yaitu $(0,8)$.

###Kita cari klimaks $x_{p},y_{p}$ dari $y=x^{2}-6x+8$
$x_{p}=-\frac{b}{2a}$
$x_{p}=-\frac{-6}{2(1)}$
$x_{p}=-3$
$x_{p}=-3$ ini juga disebut dengan sumbu simetri.

$y_{p}=-\frac{D}{4a}$
$x_{p}=-\frac{b^{2}-4ac}{4a}$
$x_{p}=-\frac{(-6)^{2}-4(1)(8)}{4(1)}$
$x_{p}=-\frac{36-32}{4}=1$
Titik puncak $y=x^{2}-6x+8$ yaitu $-3,1$

Dengan menghubungkan ketiga titik diatas dengan garis melengkung dengan sumbu simetri $x_{p}=-3$ dapatlah grafik $y=x^{2}-6x+8$.

Jika kita gambar $y=x^{2}-6x+8$ dan $y=7-4x$, kurang lebih menyerupai berikut ini:

Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat  Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK)
Untuk menghitung titik potongnya serahkan kepada saya, potong Tika. Kamu Ema coba memperjatikan dimana nanti aku ada kesilapan.

Untuk mencari titik potongnya, kita coba dengan mensubstitusikan kedua kurva $y=x^{2}-6x+8$ dan $y=7-4x$.
$y=y$
$x^{2}-6x+8=7-4x$
$x^{2}-6x+4x+8-7=0$
$x^{2}-2x+1=0$
$(x-1)(x-1)=0$
$x=1$
Maka ketika $x=1$ kita peroleh nilai $y=7-4x=7-4(1)=3$.
Titik perpotongan grafik yaitu $(1,3)$.


Mudah-mudahan, yang membaca ngerti iya Mat, seru Tika sehabis akibat mengerjakan soalnya.

Jika ada masukan yang sifatnya membangun terkait problem Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK), silahkan disampaikan, kami dengan bahagia hati segera menanggapinyaCMIIW😊.

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 💗 Bagaimana perkalian dikerjakan dengan cara pilar (*pintar bernalar);
Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat  Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK)


Sumber http://www.defantri.com

Berlangganan update artikel terbaru via email:

0 Response to "Diskusi Soal Wacana Sistem Persamaan Linear Kuadrat (Splk)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel