Catatan calon guru wacana Fungsi Komposisi yang mungkin membantu yaitu;
- Jika $f\left ( x \right )=ax+b$ maka $f\left ( z \right )=a \cdot z+b$ atau $f\left ( g\left ( x \right ) \right )=a \cdot g\left ( x \right )+b$
- $\left ( f \circ g \right )\left ( x \right )=f\left ( g\left ( x \right ) \right )$
$\begin{align}
\left ( g \circ h \right )(x) &= x-2 \\
g\left ( h(x) \right ) &= x-2 \\
\dfrac{5h(x)}{h(x)+1} &= x-2 \\
5h(x) &= \left( x-2 \right)\left( h(x)+1 \right) \\
5h(x) &= xh(x)-2h(x) +x-2 \\
7h(x)-xh(x) &= x-2 \\
h(x) \left( 7-x \right) &= x-2 \\
h(x) &= \dfrac{x-2}{\left( 7-x \right)} \\
\hline
\left ( h \circ f \right )(x) &= h\left ( f(x) \right ) \\
&= \dfrac{f(x)-2}{\left( 7-f(x) \right)} \\
&= \dfrac{2x-1-2}{\left( 7- (2x-1) \right)} \\
&= \dfrac{2x-3}{ 7-2x+1 } \\
&= \dfrac{2x-3}{ 8-2x }
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ \dfrac{2x-3}{-2x+8}$
0 Response to "Bank Soal Dan Pembahasan Matematika Dasar Fungsi Komposisi Dan Fungsi Invers (Fkfi)"
Posting Komentar