iklan

Soal Dan Pembahasan Osk 2015 (Matematika Sma)

asil olimpiade tingkat kabupaten telah diterima dengan situasi gagal mempertahankan apa ya Soal dan Pembahasan OSK 2015 (Matematika SMA)
Hasil olimpiade tingkat kabupaten telah diterima dengan situasi gagal mempertahankan apa yang sudah diperoleh pada tahun kemudian (*Lihat Hasil OSK Kabupaten Humbang Hasundutan). Mudah-mudahan dari kegagalan OSK tahun ini kami bisa intropeksi diri atau memperbaiki diri dalam hal persiapan biar bisa hingga ke tingkat nasional.

Bagaimana citra soal olimpiade matematika tingkat kabupaten untuk tahun 2015 ini, mari kita simak dan kalau berminat silahkan dicoba-coba sebagai latihan untuk menguji kemampuan bermatematika kita.
  1. Banyak faktor bundar positif dari $ 2015$ adalah...
  2. Suatu dadu ditos enam kali. Probabilitas jumlah mata dadu yang muncul $ 9$ adalah...
  3. Jika $ \left ( fog \right )\left ( x \right )=\frac{7x+3}{5x-9}$ dan $ g\left ( x \right )=2x-4$, maka nilai $ f\left ( 2 \right )$ yaitu ...
  4. Diberikan trapesium $ ABCD$ dengan $ AB$ sejajar $ DC$ dan $ AB=84$ serta $ DC=25.$ Jika trapesium $ ABCD$ mempunyai lingkaran dalam yang menyinggung keempat sisinya, keliling trapesium $ ABCD$ adalah...
  5. Diketahui barisan bilangan real $ a_{1},a_{2},a_{3},...a_{n},...$ merupakan barisan geometri. Jika $ a_{1}+a_{4}=20$ maka nilai minimal dari $ a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}$ yaitu ...
  6. Bilangan bundar $ x$ kalau dikalikan $ 11$ terletak diantara $ 1500$ dan $ 2000.$ Jika $ x$ dikalikan $ 7$ terletak di antara $ 970$ dan $ 1275.$ Jika $ x$ dikalikan $ 5$ terletak di antara $ 690$ dan $ 900.$ Banyaknya bilangan $ x$ sedemikian yang habis dibagi $ 3$ sekaligus habis dibagi $ 5$ ada sebanyak...
  7. Suatu sekolah mempunyai lima kelompok berguru siswa kelas 11. kelompok-kelompok berguru itu berturut-turut mengirimkan $ 2, 2, 2, 3,\ dan\ 3$ siswa untuk suatu pertemuan. Mereka akan duduk melingkar sehingga setiap siswa mempunyai paling sedikit satu teman dari kelompok berguru yang sama yang duduk disampingnya. Banyak cara melaksanakan hal tersebut adalah...
    (Dua cara mereka duduk melingkar dianggap sama kalau salah satu cara sanggup diperoleh dari cara yang lain dengan suatu rotasi
  8. Diberikan segitiga $ ABC$ dengan sudut $ \angle ABC=90^{o}.$ Lingkaran $ L_{1}$ dengan $ AB$ sebagai diameter sedangkan Lingkaran $ L_{2}$ dengan $ BC$ sebagai diameternya. Kedua lingkaran Lingkaran $ L_{1}$ dan $ L_{2}$ berpotongan di $ B$ dan $ P.$ Jika $ AB=5, BC=12$ dan $ BP=x$ maka nilai dari $ \frac{240}{x}$ adalah...
  9. Diketahui bilangan real positif $ a$ dan $ b$ memenuhi persamaan $ a^{4}+a^{2}b^{2}+b^{4}=6\ dan\ a^{2}+ab+b^{2}=4.$ Nilai $ a + b$ yaitu ...
  10. Diketahui susunan $ 4\times 5$ titik yang jarak ke kanan sama dan jarak kebawah sama. Ada berapa segitiga (dengan luas positif) yang titik-titik sudutnya yaitu ketiga titik pada susunan tersebut?
  11. $ \begin{matrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{matrix}$
  12. Bilangan $ x$ yaitu bilangan bundar positif terkecil yang menciptakan $ 31^{n}+x \cdot 96^{n}$ merupakan kelipatan $ 2015$ untuk setiap bilangan orisinil $ n.$ Nilai $ x$ adalah...
  13. Semua bilangan bundar $ n$ yang memenuhi $ p\left ( n \right )=\frac{n^{8}+n^{7}+n^{6}+2n^{5}+2n^{4}+2n^{3}+2n^{2}+2017}{n^{2}-n+1}$ bundar adalah...
  14. Diketahui $ a, b, c$ akar-akar dari persamaan $ x^{3}-5x^{2}-9x+10=0$. Jika suku banyak $ P\left ( x \right )=Ax^{3}+Bx^{2}+Cx-2015$ memenuhi $ P\left ( a \right )=b+c, P\left ( b \right )=a+c,danP\left ( c \right )=a+b$ maka nilai dari $ A+B+C$ adalah...
  15. Pada segitiga $ ABC$, garis tinggi $ AD$, garis bagi $ BE$ dan garis berat $ CF$ berpotongan di satu titik. Jika panjang $ AB=4$ dan $ BC=5$, dan $ CD=\frac{m_{2}}{n_{2}}$ dengan $ m$ dan $ n$ relatif prima, maka nilai dari $ m-n$ adalah...
  16. Banyaknya bilangan orisinil $ n\leq 2015$ yang sanggup dinyatakan dalam bentuk $ n=a+b$ dengan $ a,b$ bilangan orisinil yang memenuhi $ a-b$ bilangan prima dan $ ab$ bilangan kuadrat tepat adalah...
  17. Tiga titik berbeda $ B,C,$ dan $ D$ terletak segaris dengan $ C$ di antara $ B$ dan $ D$. Titik $ A$ yaitu suatu titik yang tidak terletak di garis $ BD$ dan memenuhi $ \left | AB \right |=\left | AC \right |=\left | CD \right | $. Jika diketahui $ \frac{1}{\left | CD \right |}-\frac{1}{\left | BD \right |}=\frac{1}{\left | CD \right |+\left | BD \right |} $ maka besar sudut $ \angle BAC $ yaitu ...
  18. Masing-masing kotak pada papan catur berukuran $ 3 \times 3 $ dilabeli dengan satu angka yaitu $ 1,2, atau\ 3$. Banyaknya penomoran yang mungkin sehingga jumlah angka pada masing-masing baris dan masing-masing kolom habis dibagi $ 3$ adalah...
  19. Pada segilima beraturan $ ABCDE$, diagonal-diagonalnya berpotongan di $ F,G,H,I,\ dan\ J.$ Misalkan $ S_{1}$ menyatakan luas segilima $ FGHIJ$. Jika $ \frac{S_{1}}{S_{2}}=\frac{m-\sqrt{n}}{k}$ dengan $ k,m,n$ bilangan bundar positif dan $ n$ tidak mempunyai faktor kuadrat selain $ 1$, maka nilai dari $ k+m+n$ adalah...
  20. Suatu permutasi $ a_{1},a_{2},...,a_{10}$ dari $ \left \{ 1,2,...,10 \right \}$ dikatakan sebagai suatu permutasi yang hampir naik kalau terdapat tepat satu indeks $ i$ sehingga $ a_{i-1}>a_{i}.$ Banyaknya permutasi hampir anaik yang mungkin yaitu ...
  21. Untuk setiap bilangan real $ a,$ didefenisikan $ f\left ( a \right )$ sebagai nilai maksimal dari $ \left |sin\ x +\frac{2}{3+sin\ x}+a \right |$ Nilai minimal dari $ f\left ( a \right )$ yaitu ...
Begitulah citra soal olimpiade matematika tingkat kabupaten, bagaimana apakah sudah memacu adrenalin bermatematika Anda?. Sebagai materi perbandingan atau tahap pembelajaran sanggup dipelajari pembahasannya yang sanggup di d0wnl0ad pada link dibawah ini;

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Mari kita coba berguru geogebra dasar, menghitung luas tempat yang di arsir;
asil olimpiade tingkat kabupaten telah diterima dengan situasi gagal mempertahankan apa ya Soal dan Pembahasan OSK 2015 (Matematika SMA)


Sumber http://www.defantri.com

Berlangganan update artikel terbaru via email:

0 Response to "Soal Dan Pembahasan Osk 2015 (Matematika Sma)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel