Contoh Soal Dan Tanggapan - Limit, Kekontinuan Dan Teorema Apit
Untuk membaca materinya, sanggup klik Limit dan KekontinuanLangsung saja, berikut ini yaitu contoh-contoh soal beserta jawabannya.
Bagian 1
Tentukan limit-limit berikut jikalau ada, jikalau tidak ada maka berikan alasannya.
$1. \lim_{x\rightarrow 2}\frac{x^{2}-3x+2}{x-2}$
$2. \lim_{x\rightarrow 0}\frac{100}{\left | x \right |}$
Jawab:
1. Diperoleh
$\lim_{x\rightarrow2 }\frac{x^{2}-3x+2}{x-2}=\lim_{x\rightarrow2 }\frac{(x-2)(x-1)}{x-2}=\lim_{x\rightarrow 2}(x-1)=1$
2. Diperoleh
Karena
$\left | x \right |=\left\{\begin{matrix} x &;x\geq 0 \\ -x & ;x< 0 \end{matrix}\right.$
maka:
$\lim_{x\rightarrow 0^{+}}\frac{100}{\left | x \right |}=\lim_{x\rightarrow 0^{+}}\frac{100}{x}=+\infty$
$\lim_{x\rightarrow 0^{-}}\frac{100}{\left | x \right |}=\lim_{x\rightarrow 0^{-}}\frac{100}{-x}=+\infty$
Sehingga:
$\lim_{x\rightarrow 0}\frac{100}{\left | x \right |}=+\infty$
Bagian 2
Diberikan fungsi f sebagai berikut:
$f(x)=\left\{\begin{matrix} x^{2} &;x\leq a \\ 2x+3 & ;x> a \end{matrix}\right.$
Tentukan nilai a sedemikian sehingga f kontinu di x = a
Jawab:
Diperoleh:
$f(a)=a^{2}$
$\lim_{x\rightarrow a^{+}}f(x)=\lim_{x\rightarrow a^{+}}(2x+3)=2a+3$
$\lim_{x\rightarrow a^{-}}f(x)=\lim_{x\rightarrow a^{-}}x^{2}=a^{2}$
Agar f kontinu di x = a maka haruslah
$a^{2}=2a+3\Leftrightarrow a^{2}-2a-3 =0\Leftrightarrow (a-3)(a+1)\Leftrightarrow a=3 ; a=-1$
Bagian 3
Tentukan limit berikut ini jikalau ada:
$\lim_{x\rightarrow 25}\left ( 2001+\frac{x-25}{\sqrt{x}-5} \right )$
Jawab:
$\lim_{x\rightarrow 25}\left ( 2001+\frac{x-25}{\sqrt{x}-5} \right )=\lim_{x\rightarrow 25}2001+\lim_{x\rightarrow 25}\frac{(x-25)}{\sqrt{x}-5}.\frac{\sqrt{x}+5}{\sqrt{x}+5}$
$=2001 +\lim_{x\rightarrow 25}\frac{(x-25)(\sqrt{x}+5)}{x-25}$
$=2001 +\lim_{x\rightarrow 25}\sqrt{x}+5=2001+5+5=2011$
Bagian 4
Hitunglah limit-limit berikut jikalau ada. Jika tidak ada, jelaskan alasannya.
a) $\lim_{x\rightarrow 1}(x^{11}+2009)$
Jawab:
$\lim_{x\rightarrow 1}(x^{11}+2009)=1+2009=2010$
b) $\lim_{x\rightarrow 1}\sqrt{x-1}$
Jawab:
$\lim_{x\rightarrow 1}\sqrt{x-1}$ tidak memiliki limit alasannya $\sqrt{x-1}$ tidak terdefinisi di x < 1.
c) $\lim_{x\rightarrow -2^{+}}\frac{4+x-x^{2}}{2+x}$
Jawab:
$\lim_{x\rightarrow -2^{+}}\frac{4+x-x^{2}}{2+x}=\lim_{x\rightarrow -2^{+}}(3-\frac{2}{x+2}-x)=-\infty$
d) $\lim_{x\rightarrow 2}\sqrt{2-x}$
Jawab:
Misalkan $f(x)=\sqrt{2-x}$, maka f terdefinisi bila 2 - x >= 0 atau x<= 0. Dengan kata lain f tidak terdefinisi di x > 2 sehingga $\lim_{x\rightarrow 2^{+}}\sqrt{2-x}$ tidak ada. Akibatnya $\lim_{x\rightarrow 2^{+}}\sqrt{2-x}$ tidak ada.
Bagian 5
Diketahui:
$f(x)=\left\{\begin{matrix} -2 &;-4\leq x\leq -1 \\ x-1 &;-1< x\leq 0 \\ x^{2} & x> 0 \end{matrix}\right.$
Periksa kekontinuan fungsi f di:
a) x = 0
b) x = -1
Jawab:
a) Perhatikan bahwa:
$\lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0^{-}}(x-1)=-1$
$\lim_{x\rightarrow 0^{+}}f(x)=\lim_{x\rightarrow 0^{+}}x^{2}=0$
alasannya -1 # 0 maka limit $\lim_{x\rightarrow 0}f(x)$ tidak ada. Akibatnya f tidak kontinu di x = 0.
b) Perhatikan bahwa:
$\lim_{x\rightarrow -1^{-}}f(x)=\lim_{x\rightarrow -1^{-}}(-2)=-2$
$\lim_{x\rightarrow -1^{+}}f(x)=\lim_{x\rightarrow -1^{+}}(x-1)=-2$
sehingga f (-1) = -2
Karena limitnya bernilai sama yaitu -2 maka f kontinu di x = -1
Bagian 6
Teri dan Tera sedang asyik berdiskusi wacana suatu fungsi. Ada fungsi f yang kontinu di selang [-1 , 3] kecuali di x = 1. Fungsi f tidak terdefinisi di x = 1 dan f(3) = 2. Diketahui juga beberapa limit berikut:
$\lim_{x\rightarrow 1^{-}}f(x)=1;\lim_{x\rightarrow 1^{+}}f(x)=2; \lim_{x\rightarrow -1^{+}}f(x)=2$
Bantulah Teri dan Tera menjawab pertanyaan-pertanyaan berikut ini:
a) tentukan f(-1) beserta alasannya
b) tentukan $\lim_{x\rightarrow 3^{-}}f(x)$ beserta alasannya
Jawab:
a) f (-1) = 2 alasannya f kontinu(kanan) di x = -1 sehingga $\lim_{x\rightarrow -1^{+}}f(x)=2=f(-1)$
b) $\lim_{x\rightarrow 3^{-}}f(x)=2$ alasannya f kontinu (kiri) di x = 3 sehingga $\lim_{x\rightarrow 3^{-}}f(x)=2=f(3)$
Bagian 7
Diketahui fungsi f dan g kontinu di R dengan g(x)>5, untuk setiap x anggota R dan |f(x) - cos x| =< g(x) -5. Jika $\lim_{x\rightarrow 0}g(x)=5$ maka dengan memakai Teorema Apit atau yang sering disebut Teorema Jepit, tentukan $\lim_{x\rightarrow 0}f(x)$.
Jawab:
Perhatikan bahwa:
|f(x) - cos x| =< g(x) -5
<==> - (g(x) - 5) =< f(x) - cos x =< g(x) -5
<==> 5 - g(x) + cos x =< f(x) =< g(x) - 5 + cos x
Karena $\lim_{x\rightarrow 0}g(x)=5$ maka:
$\lim_{x\rightarrow 0}(5-g(x)+cos x)=\lim_{x\rightarrow 0}(-g(x))+\lim_{x\rightarrow 0}5+\lim_{x\rightarrow 0}cos x=1$
$\lim_{x\rightarrow 0}(g(x)-5+cos x)=\lim_{x\rightarrow 0}g(x)+\lim_{x\rightarrow 0}5+\lim_{x\rightarrow 0}cos x=1$
sehingga berdasarkan Teorema Apit $\lim_{x\rightarrow 0}f(x)=1$
Bagian 8
Dengan memakai Teorema Apit, hitunglah:
$\lim_{x\rightarrow 0}x^{2}\left | \frac{sin x}{x} \right |$
Jawab:
Diperoleh:
$-1\leq sin x\leq 1\Leftrightarrow 0\leq \left | sinx \right |\leq 1$
$\Leftrightarrow 0\leq \left | \frac{sin x}{x}\right |\leq \frac{1}{\left | x \right |}$
$\Leftrightarrow 0\leq x^{2} \left | \frac{sin x}{x}\right |\leq \frac{x^{2}}{\left | x \right |}$
Karena $\lim_{x\rightarrow 0}0=0$ dan
$\lim_{x\rightarrow 0^{+}}\frac{x^{2}}{\left | x \right |}=\lim_{x\rightarrow 0^{+}}\frac{x^{2}}{ x}=\lim_{x\rightarrow 0^{+}}x=0$
$\lim_{x\rightarrow 0^{-}}\frac{x^{2}}{\left | x \right |}=\lim_{x\rightarrow 0^{-}}\frac{x^{2}}{ -x}=\lim_{x\rightarrow 0^{-}}-x=0$
sehingga, $\lim_{x\rightarrow 0}\frac{x^{2}}{\left | x \right |}=0$ maka berdasarkan Teorema Apit sanggup disimpulkan bahwa:
$\lim_{x\rightarrow 0}x^{2}\left | \frac{sin x}{x} \right |=0$
Bagian 9
Misalkan fungsi f memenuhi $\left | x^{2}f(x)+1 \right |\leq sin^{2}(x-2)$ untuk semua x yaitu bilangan real. Dengan Teorema Apit tentukan $\lim_{x\rightarrow 2}f(x)$
Jawab:
$\left | x^{2}f(x)+1 \right |\leq sin^{2}(x-2)$
$\Leftrightarrow -\sin ^{2}(x-2)\leq f(x)+1\leq \sin ^{2}(x-2)$
$\Leftrightarrow -sin^{2}(x-2)-1\leq x^{2}f(x)\leq \sin^{2}(x-2)-1$
$\Leftrightarrow \frac{-sin^{2}(x-2)^{2}-1}{x^{2}}\leq f(x)\leq \frac{sin^{2}(x-2)^{2}-1}{x^{2}}$
Karena
$\lim_{x\rightarrow 2}\frac{-sin^{2}(x-2)^{2}-1}{x^{2}}=-\frac{1}{4}=\lim_{x\rightarrow 2} \frac{sin^{2}(x-2)^{2}-1}{x^{2}}$
maka berdasarkan Teorema Apit atau Teorema Jepit diperoleh:
$\lim_{x\rightarrow 2}f(x)=-\frac{1}{4}$
Semoga Bermanfaat
0 Response to "Contoh Soal Dan Tanggapan - Limit, Kekontinuan Dan Teorema Apit"
Posting Komentar