Rumus Cepat I Menghitung Luas Tempat Kurva Dengan Integral
Pada postingan sebelumnya telah dijelaskan bagaimana cara menghitung luas kawasan yang dibatasi oleh kurva dengan memakai perhitungan integral. Pahamkan diri anda untuk hal tersebut sebelum memakai rumus cepat ini. Anda sanggup baca pada halaman Cara Menghitung Luas Daerah dengan Integral.
Penggunaan rumus cepat ini tidak berlaku umum. Ada syarat dan ketentuan yang berlaku sehingga kondisi tersebut sanggup dipakai rumus ini.
Luas Daerah di Bawah Kurva dengan Diskriminan
Jika anda mempunyai fungsi kuadrat $ ax^2 + bx + c = 0 \, $ maka Diskriminan (D) bisa dinyatakan dengan $ D = b^2 - 4ac $.
Rumus Luas kawasan dibatasi kurva dengan diskriminan ini sebagai berikut,
$ \,Luas = \frac{D\sqrt{D}}{6a^2} $Syarat dan ketentuan penggunaan rumus ini apabila kawasan tersebut hanya di batasi oleh dua fungsi. Fungsi-nya pun harus maksimal berpangkat 2. Langkah penggunaannya, Misalkan f(x) dan g(x) ialah fungsi yang membatasi daerah:
- Bentuk fungsi f(x)=g(x) jadikan f(x)-g(x)=0
- Anda akan mendapat persamaan kuadrat identifikasi a,b,c dan hitung diskriminan
- Silakan gunakan rumus di atas.
Contoh Gambar fungsi yang memenuhi untuk dipakai rumus ini,
Pembuktian Rumus
1. Misalkan fungsi persamaan $ y = a_1x^2 + b_1x + c_1 \, $ dan $ y = a_2x^2 + b_2x + c_2 $
Akan dicari titik potong dengan cara
$ \begin{align} y_1 & = y_2 \\ a_1x^2 + b_1x + c_1 & = a_2x^2 + b_2x + c_2 \\ (a_1-a_2)x^2 + (b_1-b_2)x + (c_1-c_2) & = 0 \end{align} $
Asumsikan $ a = a_1 - a_2, b = b_1 - b_2, c= c_1 - c_2 $.
Didapat persamaan $ ax^2 + bx + c = 0 \, $ dengan akar-akar $ x_1 \, $ dan $ x_2 \, $ yang mana ialah titik potong kedua kurva persamaan. Untuk salah satu persamaan garis, artinya $a_2=0$
2. Sesuai sifat Operasi akar-akar persamaan kuadrat $ ax^2 + bx + c = 0 \, $ jikalau akarnya $ x_1 \, $ dan $ x_2 $
$ x_1 + x_2 = \frac{-b}{a}, \, x_1 . x_2 = \frac{c}{a} , \, x_2 - x_1 = \frac{\sqrt{D}}{a} $
$ x_2^2 - x_1^2 = (x_2-x_1)(x_2+x_1) = \frac{\sqrt{D}}{a} . \frac{(-b)}{a} $
$ x_2^3 - x_1^3 = (x_2-x_1)^3 + 3x_1x_2(x_2-x_1) = (\frac{\sqrt{D}}{a})^3 + 3.\frac{c}{a} \frac{\sqrt{D}}{a} $
3. Dengan Cara Menghitung Luas kawasan dengan Integral biasa dilakukan klasifikasi sebagai berikut,
$\begin{align} \text{Luas } & = \int \limits_{x_1}^{x_2} y_1 - y_2 dx \\ & = \int \limits_{x_1}^{x_2} (ax^2 + bx + c) dx \\ & = [\frac{a}{3}x^3 + \frac{b}{2}x^2 + cx]_{x_1}^{x_2} \\ & = [\frac{a}{3}x_2^3 + \frac{b}{2}x_2^2 + cx_2] - [\frac{a}{3}x_1^3 + \frac{b}{2}x_1^2 + cx_1] \\ & = \frac{a}{3}(x_2^3 - x_1^3) + \frac{b}{2}(x_2^2 - x_1^2) + c(x_2 - x_1) \\ & = \frac{a}{3}[ (\frac{\sqrt{D}}{a})^3 + 3.\frac{c}{a} \frac{\sqrt{D}}{a} ] + \frac{b}{2}[\frac{\sqrt{D}}{a} . \frac{(-b)}{a}] + c(\frac{\sqrt{D}}{a}) \\ & = \frac{a}{3}[ \frac{\sqrt{D}}{a}. \frac{D}{a^2} + 3.\frac{c}{a} \frac{\sqrt{D}}{a} ] + \frac{b}{2}[\frac{\sqrt{D}}{a} . \frac{(-b)}{a}] + c(\frac{\sqrt{D}}{a}) \\ & = \frac{1}{3}[ \frac{\sqrt{D}}{a}. \frac{D}{a} + 3c \frac{\sqrt{D}}{a} ] + \frac{b}{2}[\frac{\sqrt{D}}{a} . \frac{(-b)}{a}] + c(\frac{\sqrt{D}}{a}) \\ & = \frac{\sqrt{D}}{a} \left( \frac{1}{3}[ \frac{D}{a} + 3c ] + \frac{b}{2}[ \frac{(-b)}{a}] + c \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{1}{3}[ \frac{D+3ac}{a} ] - \frac{b^2}{2a} + c \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{2}{6}[ \frac{D+3ac}{a} ] - \frac{3b^2}{6a} + \frac{6c}{6} \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{2D+6ac}{6a} - \frac{3b^2}{6a} + \frac{6c}{6} \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{2D - 3b^2 + 12ac}{6a} \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{2D - 3(b^2 - 4ac)}{6a} \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{2D - 3(D)}{6a} \right) \\ & = \frac{\sqrt{D}}{a} \left( \frac{-D}{6a} \right) \\ & = \frac{-D\sqrt{D}}{6a^2} \, \, \, \, \, \, \text{(luas selalu positif)} \\ & = \frac{D\sqrt{D}}{6a^2} \end{align} $
Terbukti bekerjsama $ \, Luas = \frac{D\sqrt{D}}{6a^2} $
Contoh Soal dan Pembahasan Luas dengan Rumus Diskriminan
Berikut pola Soal dan pembahasan cara cepat menghitung luas kawasan dengan integral
Soal 1. Hitung luas kawasan yang di batasi oleh fungsi persamaan $ y = x^2 - 2x \, $ dan $ y = 6x - x^2 $ ?
Pembahasan:
Bentuk persamaan dan menghitung nilai diskriminan:
$ \begin{align} y_1 & = y_2 \\ x^2 - 2x & = 6x - x^2 \\ 2x^2 - 8x & = 0 \\ a = 2, \, b = -8, \, c & = 0 \\ D & = b^2 - 4ac \\ & = (-8)^2 - 4 . 2 . 0 \\ & = 64 \end{align} $
Gunakan Rumus luas:
$ \begin{align} \text{Luas } & = \frac{D \sqrt{D}}{6a^2} = \frac{64 \sqrt{64}}{6. 2^2} = \frac{64 . 8}{24 } = \frac{64}{3} = 21\frac{1}{3} \end{align} $
Soal 2. Tentukan luas kawasan yang dibatasi oleh kurva $ y = x^2 + 3x + 5 \, $ dan $ y = -4x - 1 $ ?
Pembahasan:
Bentuk persamaan dan menghitung nilai diskriminan:
$ \begin{align} y_1 & = y_2 \\ x^2 + 3x + 5 & = -4x - 1 \\ x^2 + 7x + 6 & = 0 \\ a = 1, \, b = 7, \, c & = 6 \\ D & = b^2 - 4ac \\ & = (7)^2 - 4 . 1 . 6 \\ & = 25 \end{align} $
Gunakan rumus luas:
$ \begin{align} \text{Luas } & = \frac{D \sqrt{D}}{6a^2} = \frac{25 \sqrt{25}}{6. 1^2} = \frac{125}{6} = 20\frac{5}{6} \end{align} $
Untuk Cara Kedua yang lebih cepat silakan baca : Cara Cepat Menghitung Luas Daerah Antara 2 Kurva
Untuk Cara Kedua yang lebih cepat silakan baca : Cara Cepat Menghitung Luas Daerah Antara 2 Kurva
0 Response to "Rumus Cepat I Menghitung Luas Tempat Kurva Dengan Integral"
Posting Komentar